




# Timeless Reliability

ROMELECTRO

# ANNUAL REPORT 2012



# **Company Profile**

Romelectro is currently one of the most important EPC Contractors of Romania for complex energy and environment related projects. The company has more than 40 years of experience on the Romanian and the international market in turnkey projects covering the entire power energy chain from generation to transmission, distribution and supply.

privately-owned Romanian company, Romelectro became in 2006 the majority shareholder in ISPE, CELPI and Electromontaj Carpați Sibiu, setting up the Romelectro Group.

The internal and external references of Romelectro group of companies include:

- ▶ Sophisticated design and **engineering solutions** for projects of over 15,000 MW in conventional power plants
- ► Complex rehabilitation, retrofitting and upgrading in the field of thermal power plants and cogeneration plants developed for more than 3,000 MW
- ▶ Projects for new facilities using both conventional fuels and renewable energy sources (biomass, biofuel, waste)
- ▶ **Design and engineering** for more than 150 high voltage Electrical Substations
- ► Approximately 22,000 km of **designed or executed OHTLs,** out of the high need for rehabilitation,

which 10,000 km in countries from Middle East, Asia, North Africa and Latin America.

Over the recent years, Romelectro has become Romania's key EPC Contractor in environmental projects, successfully developing ash and slag removal and storage in dense slurry system, low NOx burner projects and flue gas desulphurization projects for coalfired power plants.

Renewable energy is another business line of great importance to Romelectro group of companies. Specialized teams of engineers cover practically all market-available technologies. For wind energy farms, our specialists have already prepared grid connection studies for more than 30,000 MW installed. Moreover, Romelectro is working on developing important biomass cogeneration projects and waste to energy projects.

While recent works focused mainly on the Romanian market—due to

development and renewable energy projects—Romelectro's international experience is also considerable. The company is known on all continents as EPC contractor for complex energy projects. Vafregan and Saveh Dams in Iran, Ksob and El Fakia Dams in Algeria, 10,000 km of OHTLs in Iran, Iraq, Philippines, Jordan, Syria, Algeria, Malaysia and Nigeria, are just some of the most important projects in Romelectro's portfolio.

Romelectro became the preferred local strategic partner on the Romanian market for complex power generation and power transmission and distribution projects. Moreover, our strategic partnerships and agreements with the world's most important equipment, technology and know-how suppliers ensure strong competitive advantages for consolidating our export activity.

Today, Romelectro Group of companies counts over 1,200 employees, out of which 550 are specialized in design and engineer



# Romelectro Group

## Romelectro

**EPC Contractor, Project** Developer and Investor in the fields of power and heat generation, power transmission & distribution and environmental protection.

## ISPE

National leader as consulting and engineering company in the field of power generation and power T&D.

# **CELPI**

Contractor for design, construction and testing for steel structures in the field of power T&D and

# **Electromontai Carpati**

Contractor for construction and installation works for power T&D and lighting

# **Certificates**

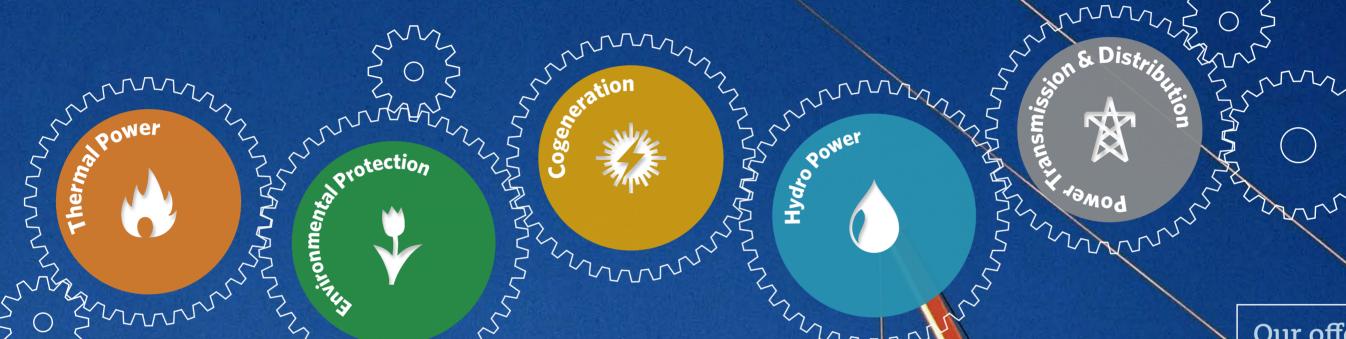
# **Quality Management**

Romelectro is certified by IQNet and SRAC as General Contractor for construction-mountng, Power Supplier and Import-Export Services, which has implemented and maintains a Quality Management System which fulfils the requirements of the standard ISO 9001:2008.

# **Environmental Management System**

Romelecto is certified by IQNet and SRAC as General Contractor for construction-mounting, Power Supplier and Import-Export Services, which has implemented and maintains an Environmental Management System which fulfils the requirements of the standard SR EN ISO 14001:2005 (ISO 14001:2004).

# **Occupational Health** and Safety System


Romelectro is certified by IQNet and SRAC as General Contractor for construction-mounting, Power Supplier and Import-Export Services,



which has implemented and maintains an Occupational Health and Safety System which fulfils the requirements of the standard OHSAS 18001:2007.



# **Market Areas**



# Our role on the market

- ► EPC Contractor
- ► Project Developer & Local Strategic Partner
- ► Investor
- ► Electricity Supplier

# **Thermal Power**

The companies of Romelectro Group participated in the designing process of the majority of the thermal power plants in operation in Romania. Based on this legacy, coupled with the state of the art engineering skills of our team, we have the necessary competencies, technologies, resources and knowhow to answer to our clients' needs for both green field projects and reconversion or modernization of existing power plants.

# Environmental Protection

In line with the environmental protection-related goals set by the EU Energy 2020 Strategy and the EU Energy 2050 Roadmap, Romelectro implements the most advanced technologies in order to comply with environmental related standards. Romelectro is among the ding companies in Romania in providing engineering solutions, technologies, and processes designed to address our client's environmental protection targets

# Cogeneration

Romelectro promotes the highest efficiency technologies for both transforming existing power plants into modern Combined Heat and Power Plants and for developing new cogeneration facilities.

# Hydro Power

As an EPC Contractor and as an Investor, Romelectro is actively involved in deloping the important hydropo r potential in Romania and in the region, offering turnkey execution services for projects in hydrotechnical and hydropower fields.

# Power Transmission and Distribution

Power Transmission and Distribution is Romelectro's traditional core business field. Romelectro's competencies in the area are than 40 years of domestic and This expertise is the test of time continuously expanded while new dimensions, techn standards. One such leading role in providing electrica grid connection for powe tion plants based on ren

# Our offer

- Studies, research and development
- Technical and commercial consultancy
- Basic and Detailed Engineering
- Equipment, parts and know-how supplier
- Erection services for equipments and installations
- Civil works
- Site supervision and management
- Commissioning
- Operation monitoring during guarantee period
- Maintenance, rehabilitation and modernisation programs

President's Statement

# Investing trust and respect in strong and timeless partnerships

"Dear Shareholders, Partners and Colleagues,

e define the relations with our clients, our business associates and our employees in terms of partnerships. We believe that reliable partnerships represent one of the most important attributes for achieving success, especially in times of difficult external challenges. This is why we invest our trust and respect in strong and timeless relations with our partners. The same principle applies inside our company. We strive at building honest, long-term and comprehensive working relationships in all our teams.

# IN TIMES OF MAJOR ECONOMIC **CHANGES, WE CONTINUE DELIVERING PERFORMANCE**

The last five years were crucial for the business environment both at national and European, regional and international level. In Romania, the recent crisis had a major impact on the electrical power industry related services sector. Large scale infrastructure

projects either for power generation or power transmission were practically postponed or put on hold in the middle of their execution process. New projects were few and far between.

The reasons are multiple and inter-connected: cuts in the public budgets allocated for big infrastructure projects, reduced incentives for private investment and a context of low liquidity of markets, unattractive or tough financing conditions, unstable legal and energy policy framework, etc. Many companies failed to tackle the economic and financial challenges and the result was either shutting down business lines or drastically reconsidering their business plan.

In this complex environment, we managed to keep activity on a steady and balanced development course. Over the time, we built a nexus of capabilities allowing the company to stay on competitive grounds and to deliver performance even in a difficult external context. These capabilities are linked to our stable financial position, the quality guarantees on our works, our honest and competitive

price-quality ratio, and to our highly skilled and qualified technical and operational experts.

# IN TIMES OF ENVIRONMENTAL **CHALLENGES, WE ARE FOCUSING ON A SUSTAINABLE ENERGY FUTURE**

The need for efficient and durable solutions for ensuring a balanced energy-environment dyad becomes more pressing and timelier than ever. The energy efficiency and environmental protection issues are on the top of the energy and economic agenda of all governments, international organizations, legislative bodies and European institutions.

All scenarios show that electricity demand will increase in the future energy mix, arriving up to around 40% in 2050. This trend adds a further element to the complexity of the debate regarding energy development and environmental protection. Growing electricity demand highlights the issue of security of supply.

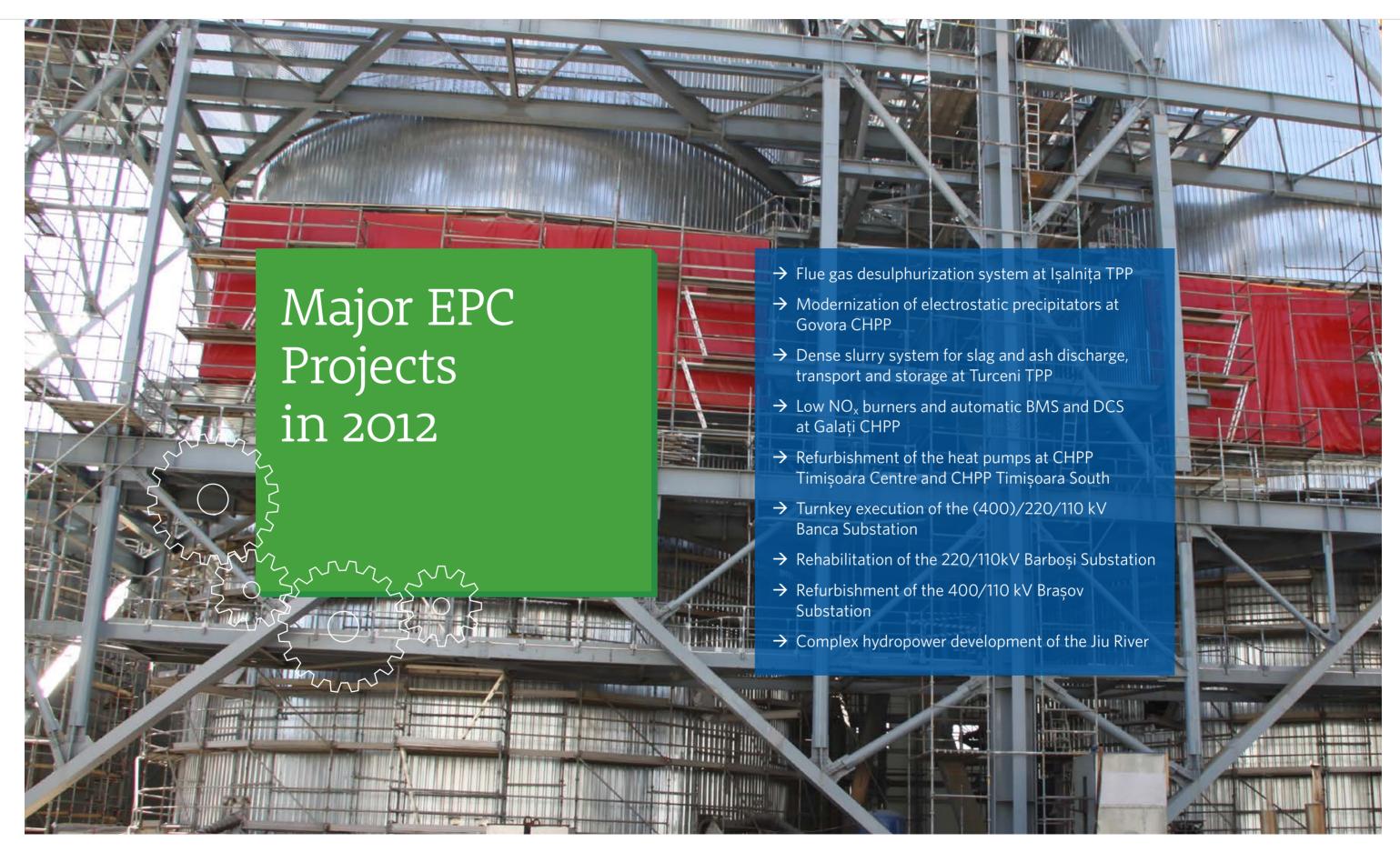


"We helieve that reliable partnerships represent one of the most important attributes for achieving success."

We are looking at business opportunities and long term technological investments taking into consideration all these three aspects: energy development, environmental protection and security of supply. In this respect, we are focusing on two lines of development: one related to renewable sources for power and heat generation and another linked to solutions for decreasing the environmental impact of conventional power generation sources.

Romelectro became Romania's key EPC Contractor in environmental projects, promoting and implementing solutions for ash and slag removal and storage in dense slurry system, low NO<sub>x</sub> burner projects and flue gas desulphurization projects for coal power plants.

# **WE STAY COMPETITIVE AT ALL TIMES BECAUSE WE STAY COMMITTED TO OUR TEAM**


We strongly believe that maintaining high level standards of quality for our services is one of the most important vectors for our company's competitiveness and success on the long term.

We managed to build a qualitywise business model by putting in centre the competence, dedication and commitment of our team. Moreover, the expertise acquired during more than four decades of activity in Romania and abroad is a valuable resource that accompanies our work as EPC Contractor. As it was confirmed over the time, this expertise was offered at the most competitive price. Our development strategy aims to insure the continuous growth of the company based on the quality of our services and the best solutions for our clients at competitive prices.

Professionalism and technical expertise are paramount to building a strong and long-lasting reputation. This is why we constantly encourage and support our employees to strive for their continuous development and professional growth. We are determined to maintain, attract and develop the best human capital available inside and outside the company. For this purpose, we created and constantly develop a work environment where people are respected for their valuable contribution. This is how we understand to stay reliable by keeping our promise to our customers, our partners and our employees."



President



# **EPC** Projects

# Flue gas desulphurization system at Işalniţa TPP

In 2012, Romelectro started the complex works for flue gas desulphurisation at power unit no. 7 and power unit no. 8, at Işalniţa TPP, part of Oltenia Energy Complex. Each of the two power units has an installed power of 315 MW.

Starting year: **2012**Year of commissioning: **2014**Client: **Oltenia Energy Complex** 

# Main technical characteristics

At present, the flue gas is dusted by means of the electrostatic precipitators and discharged into the atmosphere through the existing smoke stack. These stacks made of reinforced concrete have the following dimensions: physical height H = 200 m and inside diameter at the top  $\emptyset$  = 9.3 m. The rated sulphur dioxide emissions, estimated in the current operating conditions of the steam boilers related to the two power units, range between 3317 and 5543 mg/Nm³.

The scope of the investment is the design, delivery, construction, erection and commissioning, on the grounds of a turnkey contract, of two full, independent and operational flue gas desulphurization plants, in order to meet the European and national legal environmental requirements. The two plants will be executed identically, with the same type of equipment, delivered by the same suppliers.

The solution applied to this project will decrease the  $SO_2$  emissions to 200 mg/Nm³ when using 100% lignite as fuel, respectively 185 mg/Nm³ in case of using 90% lignite + 10% natural gas as fuel, meaning over 96% desulphurization efficiency. The clean flue gas is discharged through a new smoke stack located on the absorber, 120 m high from ground level. This type of desulphurization plant is the most used in flue gas desulphurization resulting

The purpose of the contract is to improve the quality of the air in the area by reducing the sulphur dioxide (SO<sub>2</sub>) emissions, discharged together with the flue gas resulting from the two power units of Isalnita TPP.

**PARTNERSHIP** 

BABCOCK NOELL GmbH

Consortium Leader

**ROMELECTRO** 

Consortium Partner





# Key figures

2 units × 315 MW

SO<sub>2</sub> concentration before the implementation of the project (current operation): between 3317 and 5543 mg/Nm<sup>3</sup>

SO<sub>2</sub> concentration after the implementation of the project: maximum 200 mg/Nm<sup>3</sup>

TECHNOLOGY: Wet desulphurization plant using limestone slurry

96%

from high power thermal power plants operating on fossil fuel.

The desulphurization technology used is wet desulphurization, based on the use of crushed limestone as reagent, the final product (gypsum slurry) being discharged in the dense slurry ash and slag discharge plant. In order to provide the appropriate microclimate in the limestone dust handling area, the following are necessary and shall be provided:

- ➤ Dusting installations in the limestone discharge spots and the dust limestone silo
- ▶ Vacuum cleaning installations.

The desulphurization plant shall be fully automatic, with its own control chamber, with monitoring devices for all the operating parameters (flows, temperatures, pressures of the flue gas, pre-treated water, limestone

slurry, gypsum slurry, compressed air etc.) Moreover, the pollutant agent emissions in the flue gas discharged into the atmosphere through the new smoke stack, as well as their oxygen content, shall be monitored online according to the environment related legislation in force.

The following parameters will be monitored online:

- ► Clean dry and wet gas flow, in m³/h, Nm³/h
- ► Clean gas temperature, in °C
- ► Oxygen concentration in the clean gas, in mg/Nm³, % vol., ppm
- ► Water vapour concentration in the clean gas, in mg/Nm³, % vol., ppm
- ► SO<sub>2</sub>, NO<sub>x</sub>, dust, CO<sub>2</sub> concentrations, in mg/Nm³, % vol., ppm, in the dry clean gas, corrected at 6% oxygen.

# **EPC Projects**

# Modernization of electrostatic precipitators at Govora CHPP

As EPC Contractor, Romelectro started in 2012 the works for the modernization of the electrostatic precipitators for the steam boilers no. 5 and 6, at Govora CHPP. Each of the two boilers has a capacity of 420 t/h. Govora CHPP is the only thermal energy producer for the residential area and industrial platform of Râmnicu Vâlcea.

Starting year: **2012**Year of commissioning: **2013**Client: **Govora CHPP** 

## **PARTNERSHIP**

## **ROMELECTRO**

**EPC Contractor** 

## **TECHNO MONTAJ**

Mecanical erection

# **ICPET ECO**

Engineering and design

# Key figures

# 2 boilers × 420 t/h

4 electrostatic precipitators casings are to be fitted with new inner installation components

400 mm collecting electrodes spacing optimised design

24 new high tech performance 120kW power transformers with high frequency technology to supply high voltage to the retrofitted electrostatic precipitators

2 new improved electrostatic precipitator monitoring and control system

Dust concentration after the implementation of the project: maximum 48 mg/Nm<sup>3</sup>



The purpose of
the contract is to
reduce the level of
dust emissions to
maximum 48 mg/Nm³,
in order to improve
the quality of the air
in the area and to
comply with European
environmental
standards.



# **EPC** Projects

# Dense slurry system for slag and ash discharge, transport and storage at Turceni TPP

In 2012 Romelectro continued the works for implementing the dense slurry technology based system at 4 power units at Turceni TPP (power units 3, 4, 5, 6). Each of the power units has a 330 MW installed capacity.

Starting year: 2009
Year of commissioning: 2013
Client: Oltenia Energy Complex

# **Project desciption**

## Two dense slurry stations

One dense slurry station is set up for the entire ash discharge system from units 3 and 4, and another for the entire discharge system from units 5 and 6, including dense ash slurry mixers, bottom ash slurry thickeners and distance transport pumps.

### New dry ash discharge system

The ash resulting from all the three fields of electrostatic precipitators, from the rotating air preheaters, economizer, and mechanical filters is taken over by a pneumatic system and conveyed to the ash silo, from where it is dozed in the mixer.

### **New Bagger pump station**

The current Bagger pumps will be replaced by reduced size and parameter pumps, equipped with frequency converters and automatic control of their charge. The slag is conveyed to a thickener, to provide an optimum slag and water ratio, and then directed to a mixer, where the dense slurry is prepared.

The purpose of the contract is to apply the most efficient and sustainable solutions for the discharge, transport and storage of the waste resulting from the coal firing process at the four power units, aiming to comply with the energy and environment related European norms.







# Key figures

4 units × 330 MW

4 boilers × 155 t/h of dry solids (30 t/h bottom ash + 105 t/h fly ash + 20 t/h FGD gypsum)

5 × 450 kW + 1 × 250 kW Atlascopco compressors

8 sets of Metso Mineral centrifugal pump groups

CIRCUMIX continuous mixing technology

4900 m transport distance

24 m geodetic level difference

# New compressor station

A new compressor station will be built in order to provide the necessary air for dry ash transport installation. Also, instrumental air compressors will be procured to provide necessary air for all the pneumatic consumers inside the project limit.

## Wastewater treatment plant

To treat wastewater from units no. 3, 4, 5 and 6 a wastewater treatment plant will be installed in the engine room in block no. 2.

## Partnership

# **ROMELECTRO**

**EPC Contractor** 

### **GEA EGI**

Equipment supply and basic engineering

### SAEM Energomontaj

Construction and erection works

### ISPF

Engineering and design

# **EPC** Projects

# Low NO<sub>x</sub> burners and automatic BMS and DCS at Galați CHPP

In 2012 Romelectro continued the complex works for the modernization and retrofitting of the firing system of 5 steam boilers x 420 t/h (6, 7, 8, 5, 4) at Galaţi CHPP, by implementing new NO<sub>x</sub> burners and automatic BMS and DCS.

Starting year: 2008 Year of commissioning: 2014 Client: Electrocentrale Galați

# Main technical characteristics

For each of first three boilers (6, 7, 8) the new installation consists of:

- ► 6 low NO<sub>x</sub> mixed burners for heavy fuel oil and natural gas
- ► a new modern system for heavy fuel oil and natural gas supply
- ► a new BMS (Burner Management System) unit
- ► a new DCS (Distributed Control System) unit
- ▶ emission monitoring system
- ▶ methane leakage monitoring system

For each of last two boilers (5, 4) the new installation consists of:

- ► 6 low NO<sub>x</sub> burners for natural gas
- ► 8 low NO<sub>x</sub> burners for blast furnace gas
- ► a new modern system for natural gas supply
- ► a new modern system for blast furnace gas supply
- ► a new BMS (Burner Management System) unit
- ► a new DCS (Distributed Control System) unit
- ▶ emission monitoring system
- ► methane leakage monitoring system.

The purpose of the contract is to apply the most reliable and efficient solutions for decreasing the level of NO<sub>x</sub> emissions of the firing systems of the five boilers at Galați CHPP, in order to meet the European environmental requirements.



# Key figures

5 × 420 t/h steam boilers

6 x 53 MW mixed heavy fuel oil - natural gas low NOx burners / boiler body (boilers 6, 7, 8)

 $6 \times 53$  MW natural gas low  $NO_x$  burners / boiler body (boilers 4, 5)

 $8 \times 21$  MW blast furnace gas low  $NO_x$  burners / boiler body (boilers 4, 5)

BMS type SIL3, failsafe, double redundant / boiler body

DCS type Ovation / boiler body



### **Estimated Performance**

Reducing the level of noxious emissions to the following values:

- ► 150 mg NO<sub>x</sub>/Nm³, 100 mg CO/ Nm³, 5 mg dust/Nm³ for natural gas firing
- ► 350 mg NO<sub>x</sub>/Nm³, 170 mg CO/ Nm³, 50 mg dust/Nm³ for heavy fuel oil firing.

# **EPC Projects**



In November 2012, Romelectro completed the works for the refurbishment of the heat pumps at CHPP Timişoara Centre and CHPP Timişoara South.

Starting year: 2011
Year of commissioning: 2012
Client: Primăria Municipiului
Timișoara

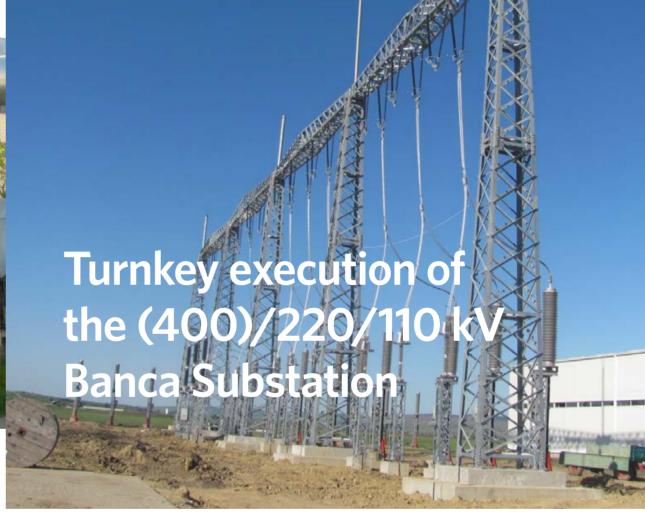
PARTNERSHIP

**ROMELECTRO** 

**EPC Contractor** 

**GLOBAL ENERGY PRODUCTION** 

Civil works and erection works


ISPE

Engineering

TIAB

Electric works

The purpose of the contract was to reduce the energy consumption and to increase the efficiency of the heat system in Timişoara by the refurbishment of the heat pumps at CHPP Timişoara Centre and CHPP Timişoara South.



Romelectro started in July 2012 the turnkey execution works for 220/110 kV Banca Substation.

Starting year: 2012 Year of commissioning: 2013 Client: Transelectrica EPC Contractor: Romelectro The purpose of the contract is to connect three privately-owned Wind Plants from Vaslui area (300 MW Ivești, 88 MW Fălciu 1 and 18 MW Fălciu 2) to the Electrical Grid.

# Rehabilitation of the 220/110kV Barboşi Substation

In 2012 Romelectro signed the contract with CNEE Transelectrica for the rehabilitation works of 220/110 kV Barboşi Substation.

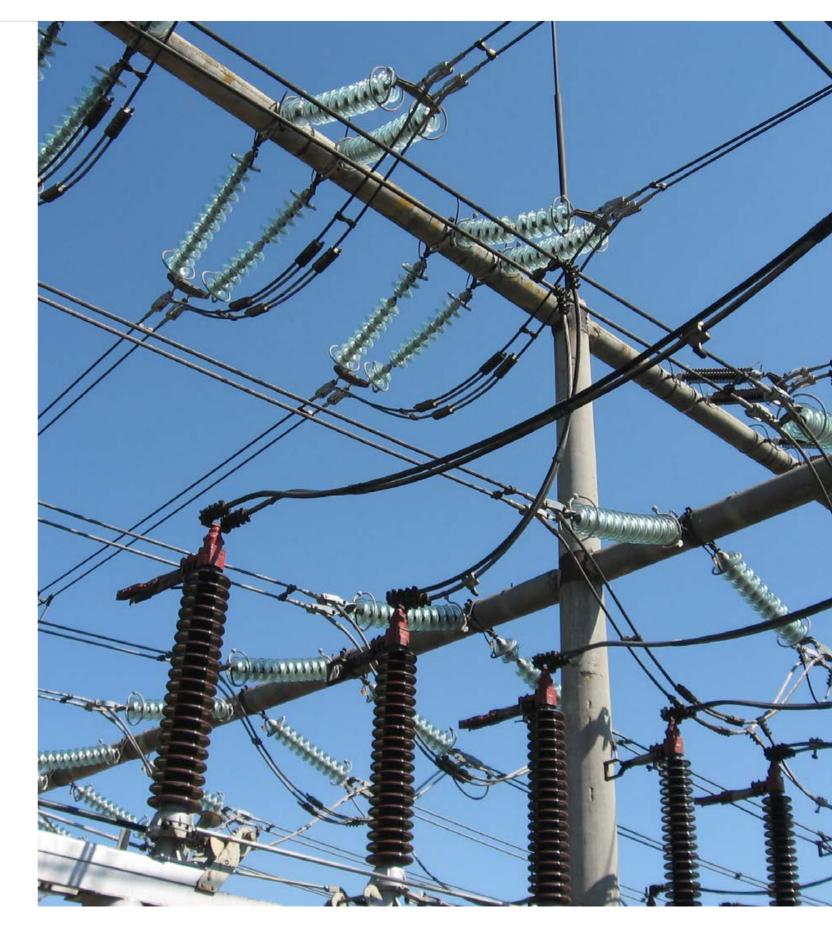
Starting year: 2012 Year of commissioning: 2014 Client: Transelectrica EPC Contractor: Romelectro

# **Project description**

The project consists of a complete rehabilitation of 220 kV Substation (design & engineering, supply, erection and commissioning, technical assistance + training) using 220 kV ABB (CBs, TC & TT and Surge Arrestors) & ALSTOM (Disconnectors) outdoor primary equipment and GE secondary equipment, SCADA system included.

# Benefits after project implementation

This new 220 kV Barboşi Substation shall increase both the safety in power supply for ARCELOR-MITTAL Steel Factory as well as 220 kV necessary powered connection between East Muntenia and Moldavia area. The purpose of the contract is to ensure an efficient and reliable operation of the Electrical Substation.


# PARTNERSHIP

# **ROMELECTRO**

EPC Contractor, Consortium Leader

# ELECTROMONTAJ CARPAŢI SIBIU

Consortium Partner



# Refurbishment of the 400/110 kV Braşov Substation

In 2012 Romelectro continued the works for the implementation of the complete rehabilitation program aiming to ensure the security of supply and operational safety of the 400/110 kV Braşov Substation.

Starting year: **2010**Year of commissioning: **2013**Client: **Transelectrica** 

# **Project description**

The 400/110 kV electrical substation in Braşov has a particular importance for the National Power System and for the local grid. Firstly, it represents a junction for 400 kV OHTL connecting Muntenia, South Transylvania and the poorly covered Moldavian area.

Secondly, the substation is important for the local distribution network as it supplies the consumption area (approx. 167 MW), being also the connection point for CET Braşov.

The purpose of this project is to complete a new 400 kV outdoor electrical substation, equipped with the modern high-performance conventional equipment, as well as a new indoor 110 kV electrical substation, equipped with SF6 insulated cubicles (110 kV GIS have)

During this project, all primary and secondary equipments will be replaced (command – control – safety devices, internal services DC/AC, backup generators, batteries, remote-controlled safety devices).

The purpose of
the contract is to
complete a new 400
kV outdoor electrical
substation, equipped
with the modern
high-performance
conventional
equipment as well
as a new indoor 110
kV GIS electrical
substation.

## PARTNERSHIP

## **ROMELECTRO**

EPC Contractor, Consortium Leader

CG Holdings Belgium NV Systems Divisions Consortium Partner





# Benefits after project implementation

- ► Increased safety level of the National Power System
- ► Ease in further upgrades by adding new cells for the 400 kV and 110 kV OHTL
- ➤ Possibility of remote access and control from all dispatching levels (regional, national)
- ► Important decrease in operation and maintenance cost
- ► Reduction of both the internal technological consumption and unscheduled interruptions.

**EPC Projects** 

# Complex hydropower development of the Jiu River

In 2012, acting as EPC Contractor, Romelectro continued the works for the execution of the three hydropower plants on the Bumbeşti–Livezeni stretch. Romelectro managed to face all the financial challenges due to Hidroelectrica's insolvency and maintained the project on a stable and secure level.

Starting year: 2004
Year of commissioning: 2014
Client: Hidroelectrica

# **Project description**

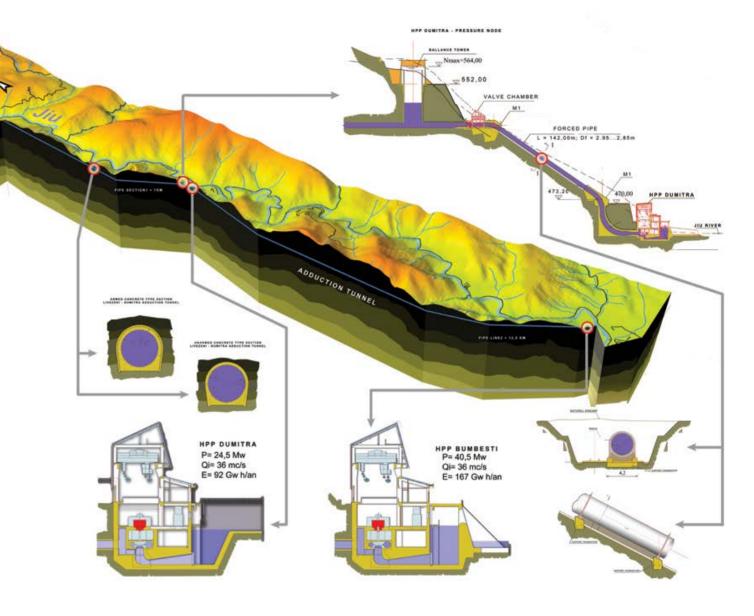
The complex development of the Jiu River on Bumbești–Livezeni stretch is the most important investment in Romania in hydropower field after 1990 and consists of building three hydropower plants with an installed power of approximately 80 MW:

- ➤ **Dumitra Hydro Power Plant,** located on the right bank of the Jiu River, equipped with 3 vertical Francis turbines.
- ► Bumbeşti Hydro Power Plant, located on the right bank of the Jiu River, equipped with 3 vertical Francis turbines.
- ► Livezeni Micro Hydro Power
  Plant, located on the technological
  platform adjacent to the dam and
  the power intake, equipped with a
  helical tubular turbine.



# **PARTNERSHIP**

### **ROMELECTRO**


Joint Venture Leader, providing all mechanical and electrical equipment, erection and commissioning

## **HIDROCONSTRUCȚIA**


Joint Ventures Partner, Contractor for civil works

### ISPH

**Engineering works** 







Projects in the Cogeneration and Hydropower Fields

# Voineasa Micro Hydro Power Plant

In 2012, the three power generation capacities of Voineasa MHPP produced around 2,300 MWh. This is the equivalent of the annual electricity consumption of about 1,500 households in Romania. 2012 was the first year of operation after the complete rehabilitation of the MHPP.

# **Project description**

Voineasa I, II and III MHPPs were built before 1987. In 2006, following an open tender initiated by Hidroelectrica, Romelectro acquired this hydro power capacity. Aiming to ensure high efficiency functioning conditions and to meet the national and European environmental related requirements, Romelectro proceeded to a full rehabilitation of the three units of the MHPP. The works involved the replacement of the old generation plant with new hydro-mechanical and electrical equipment, using a modern technology.

The rehabilitation and refurbishment project turned the existing plant into an efficient and environmentally friendly power generation capacity for harvesting the renewable potential of Mănăileasa creek.

The rehabilitation project was cofinanced with EU structural funds, in the framework of the Operational Sectorial Program "Increase the Economic Competitiveness".

Romelectro is contributing to the medium and long term energy and environmental development of Romania via:

- ► Enhancing the power quantities generated in Romania from renewable sources.
- ► Protecting the environment by reducing emissions and increasing energy efficiency.
- ➤ Diversifying the power generation sources, the technologies and infrastructure for power generation.

# Key figures

## Voineasa III MHPP

 $H_{br} = 110 \text{ m}$   $Q_i = 2 \times 0.3 \text{ m}^3/\text{s}$   $P_i = 500 \text{ kW}$  $E_m = 1,500 \text{ MWh/year}$ 

# Voineasa II MHPP

 $H_{br} = 102.3 \text{ m}$   $Q_i = 2 \times 0.3 \text{ m}^3/\text{s}$   $P_i = 500 \text{ kW}$  $E_m = 1,800 \text{ MWh/year}$ 

### Voineasa I MHPP

 $H_{br} = 93 \text{ m}$   $Q_i = 2 \times 0.30 \text{ m}^3/\text{s}$   $P_i = 680 \text{ kW}$  $E_m = 2,300 \text{ MWh/yea}$ 





Projects in the Cogeneration and Hydropower Fields

# **Ecogen Energy CHPP**

In 2012, the CHPP Buzău produced around 50,000 MWh electrical power and around 160,000 MWh thermal power.

# **Project description**

As investor and general contractor, Romelectro developed the project consisting in transforming the existing power plant of Buzău into a modern combined heat and power plant, using high efficiency technology. The installation consists of a 6 MW<sub>el</sub> motor engine plant, 2 hot water boilers (HWB) and one steam boiler (SB). The motor engine plant covers the base annual load in district heating system in Buzau city and delivers electricity to NPG and the two HWB covers the peak thermal load in district heating.

The SB provides steam for internal plant services. The heat delivered form motor engine plant and the HWBs are used to cover the demand of domestic warm water and heating for Buzău city.

The main benefits of the plant construction and the operation carried out by ECOGEN Energy SA are:

- ► minimisation of greenhouse gas emissions through combined production of electricity and heat
- ► replacement of old and low efficiency equipment with new reliable installations
- ► shot implementation period
- ▶ primary energy savings of 22.8%
- ► financial resources savings as a result of lower fuel consumption.

The framework law under which the plant was developed is the EU 2004/8/CE Directive which is transposed in Romania by GD 219/2007.

# Key figures

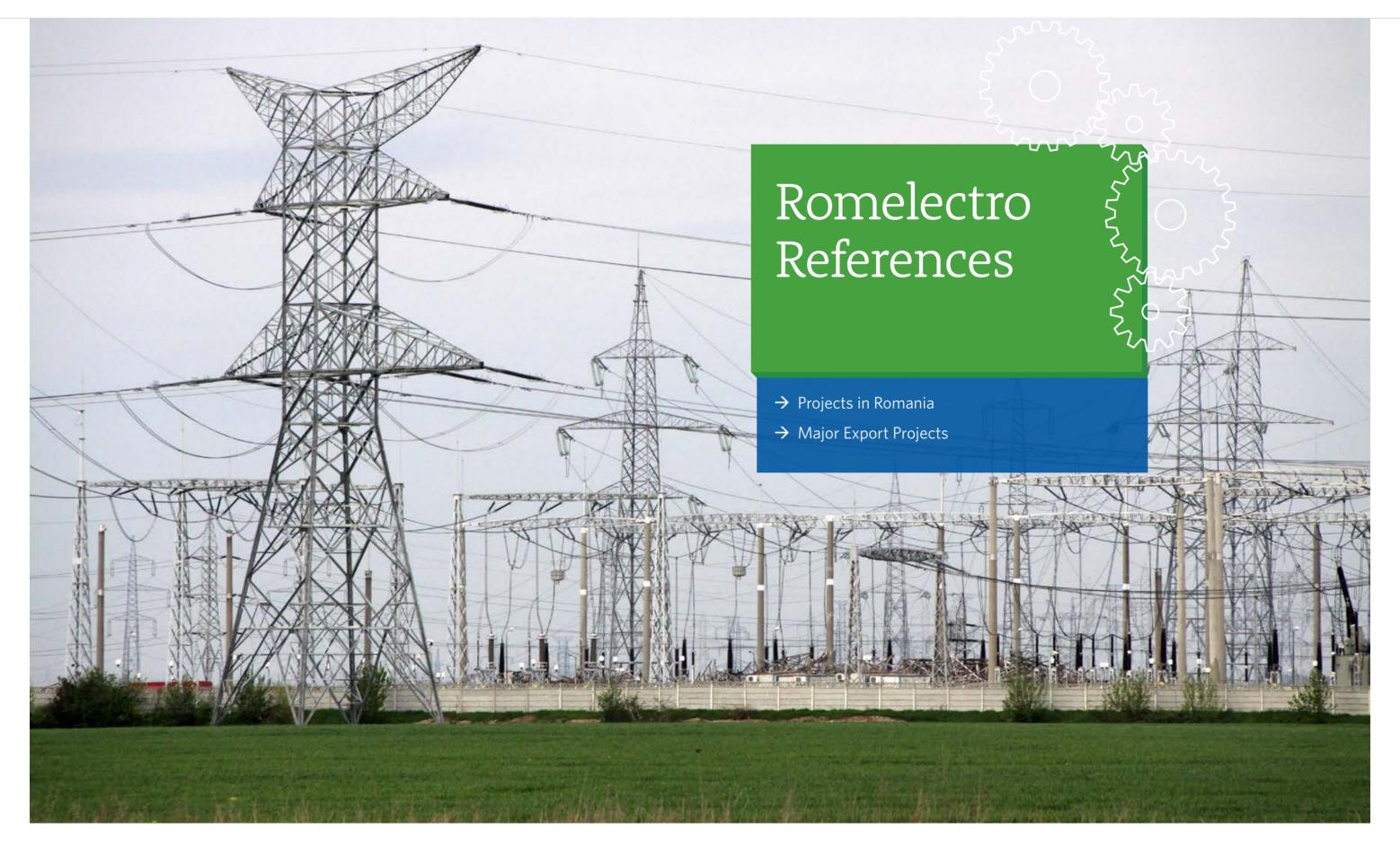
Electrical capacity (total) **6 MW**<sub>el</sub>

Heat capacity (total) **72,162 MW**<sub>th</sub>

Technology

Moto engine + HWB

Manufacturer **GE Jenbacher/LOOS** 


Type of fuel **Natural gas** 

Year of construction **2009–2010** 

Location **Buzău, Romania** 







# **Projects in Romania**

| Thermal Power Projects                                                                                                                                                                                           | Client                                            | Contract<br>performance<br>period |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|
| Reducing the sulphur dioxide (SO <sub>2</sub> ) emissions, discharged together with the flue gas resulting from power units no. 7 and no. 8 at Iṣalniṭa TPP                                                      | Oltenia Energy Complex                            | 2012–2014                         |
| Electrostatic precipitators modernization at Govora CHPP                                                                                                                                                         | Govora CHPP                                       | 2012–2013                         |
| Solutions for discharge, transport and storage of the waste resulting from the coal firing process at Turceni TPP, using dense slurry technology                                                                 | Oltenia Energy Complex                            | 2009–2013                         |
| Modernization and retrofitting of firing systems of 5 $\times$ 420 t/h boilers at Galați CHPP, by implementation of low NO $_{\rm x}$ burners and automatic BMS and DCS                                          | ELCEN Galați                                      | 2008–2014                         |
| Modernization and retrofitting of firing systems of $4 \times 320$ t/h gas fired boilers at Iernut TPP, by implementation of low NO <sub>x</sub> burners and automatic BMS                                       | ELCEN București                                   | 2009–2011                         |
| Investement for Combined Heat and Power Plant of 6 MWe and 80 Gcal in Buzău                                                                                                                                      | Ecogen Buzău (IPP)                                | 2008–2009                         |
| Increasing the stability of the slag and ash storage of Işalniţa (2 x 315 MW), on the right and left banks of Jiu river, using dense fluid technology                                                            | Craiova Energy Complex                            | 2008–2010                         |
| Refurbishment and upgrade of electrical and automation installation for 330 MW unit no. 6 at TPP Rovinari                                                                                                        | Rovinari Energy Complex                           | 2008–2010                         |
| New ash and slag deposit in Gârla and new installations for collecting, preparation, discharge and storage of dense slurry in Rovinari TPP (4 x 330 MW)                                                          | Rovinari Energy Complex                           | 2008–2009                         |
| Increasing the stability of the Valea Mănăstirii slag and ash deposit by executing the installations for ash and slag dense fluid and by developing the storage for the first hightening.                        | Craiova Energy Complex                            | 2008–2010                         |
| Rehabilitation of the 420 t/h CR 1737 type boilers in order to increase the safety in operation, especially on heavy fuel oil and for dual operation, including low NOx burners – Progresu CHPP, boiler 2        | ELCEN București                                   | 2007                              |
| Rehabilitation of the 420 t/h CR 1737 type boilers in order to increase the safety in operation, especially on heavy fuel oil and for dual operation, including low NOx burners – Progresu CHPP, boilers 3 and 4 | ELCEN București                                   | 2006–2007                         |
| Rehabilitation and modernizing of 315 MW unit no. 7 in Işalniţa TPP                                                                                                                                              | Craiova Energy Complex                            | 2005–2006                         |
| Rehabilitation of the firing installations for 525 t/h steam boiler no. 2 in București Vest CHPP and no. 5 and 6 in București Sud CHPP, by replacing with modern low NOx burners                                 | ELCEN București                                   | 2004–2006                         |
| Refurbishment of 330 MW units no. 4 and 5 in Turceni TPP (Programme A3)                                                                                                                                          | Turceni Energy Complex                            | 1995–2003                         |
| Refurbishment of 330 MW units no. 3 and 7 in Turceni TPP and no. 5 and 6 in Rovinari TPP (Programme A2)                                                                                                          | Turceni Energy Complex<br>Rovinari Energy Complex | 1994–1998                         |
| Refurbishment of 330 MW units no. 2 and 6 in Turceni TPP and no. 3 and 4 in Rovinari TPP (Programme A1)                                                                                                          | Turceni Energy Complex<br>Rovinari Energy Complex | 1994–1998                         |

| Electrical Substations                                                                                                                                                                               | Client                                | Contract<br>performance<br>period |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|
| Rehabilitation of the 220/110 kV Barboşi Substation                                                                                                                                                  | Transelectrica                        | 2012–2014                         |
| Turnkey execution of (400)/220/110 kV Banca Substation                                                                                                                                               | Transelectrica                        | 2012–2013                         |
| Refurbishment of the 400/110 kV Brașov Substation                                                                                                                                                    | Transelectrica                        | 2010–2013                         |
| Refurbishment and modernization of the 110 kV and 220 kV bays in FAI Substation                                                                                                                      | Transelectrica                        | 2007–2011                         |
| Extension and modernization aiming to increase the safety in operation of the 110/20 kV Dumbrava Sibiu Substation                                                                                    | Electrica Transilvania Sud            | 2007–2009                         |
| Primary equipment upgrade in the 110/20 kV Petrila Substation                                                                                                                                        | Transelectrica                        | 2007                              |
| Refurbishment of the 220/110/20 kV Turnu Măgurele Substation                                                                                                                                         | Transelectrica                        | 2006–2011                         |
| Modernization of the protection systems of 250 MVA transformer and 110 kV<br>PDB in 400/110 kV Brașov, Dârste, Domnești, Medgidia Sud, Pelicanu, Tulcea<br>Vest, Smârdan, Drăgănești Olt Substations | Transelectrica                        | 2006–2009                         |
| Upgrade of the 110 kV bays in HPP Ciunget Substation                                                                                                                                                 | Hidroelectrica                        | 2006–2008                         |
| Modernization of the 110kV Electrical Substation of Râmnicu Vâlcea HPP                                                                                                                               | Hidroelectrica                        | 2006–2007                         |
| Modernization of the 110kV Electrical Substation of Govora HPP                                                                                                                                       | Hidroelectrica –<br>Vâlcea Subsidiary | 2006–2007                         |
| Turnkey refurbishment of the 110/10(20) kV București Centru Substation                                                                                                                               | Electrica Muntenia Sud                | 2005–2007                         |
| Refurbishment at the 110 kV bay – 220/110/20 kV Baia Mare Substation                                                                                                                                 | Transelectrica                        | 2005                              |
| Refurbishment of the 400/220 kV Roșiori Electrical Substation                                                                                                                                        | Transelectrica –<br>Cluj Subsidiary   | 2004–2006                         |
| Modernizing works at the 220/110 kV Vetiş Electrical Substation                                                                                                                                      | Transelectrica –<br>Cluj Subsidiary   | 2004–2006                         |
| Turnkey modernization of the 110/20 kV Electrical Substation Borsec                                                                                                                                  | Electrica Transilvania Sud            | 2003–2005                         |
| Turnkey modernization of the 110/10 kV Cluj Centru Electrical Substation                                                                                                                             | Electrica Transilvania Nord           | 2003–2004                         |
| Turnkey refurbishment of the 6(20) kV Filești–Galați connection Substation                                                                                                                           | Electrica Muntenia Nord               | 2002–2003                         |

# **Overhead Transmission Lines**

| Rehabilitation of the 220 kV OHTL Lotru–Sibiu                                                                                                                               | Transelectrica | 2007–2010 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 400 kV OHTL Oradea–Nadab–Békéscsaba, new interconnexion line with Hungary                                                                                                   | Transelectrica | 2006–2008 |
| Rehabilitation of the 400 kV București South–Gura Ialomiței OHTL                                                                                                            | Transelectrica | 2006–2007 |
| Execution of 220kV and 400 kV connections of Iernut Substations                                                                                                             | Transelectrica | 2005–2006 |
| Emergency works of the Sibiu–Ţânţăreni 400kV OHTL                                                                                                                           | Transelectrica | 2005      |
| Rehabilitation of 220 kV Brazi Vest–Târgoviște OHTL                                                                                                                         | Transelectrica | 2004–2005 |
| Improving the dispatcher transmission system by executing the interconnecting of the data transmission system between the National Dispatch Centers in Romania and Bulgaria | Transelectrica | 2003–2004 |
| Rehabilitation of 220kV Borzești–Gutinaș OHTL                                                                                                                               | Transelectrica | 2003      |

# **Hydropower Projects**

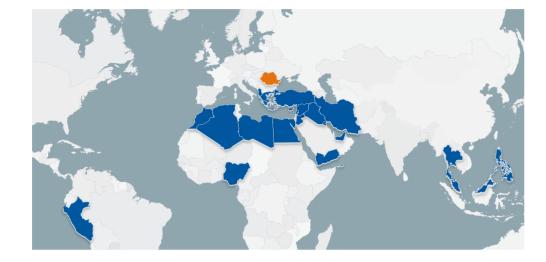
| Hydropower development of the Jiu River on the Livezeni–Bumbești stretch, with the execution of 3 hydropower plants with an installed power of 80 MW | Hidroelectrica | 2004–2014 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Rehabilitation of Voineasa Micro Hydro Power Plant, Voineasa I, II, III                                                                              | Romelectro     | 2009–2011 |

# **Major Export Projects**

# Legend

**DE** Designing & Erection

**DS** Designing & Supply


**DT** Designing & Testing

**DTS** Designing, Testing & Supply

GLST Galvanized Lattice Steel Towers

Supply

**TK** Turnkey Project



| #  | Client                                                                                                              | Country | Proj.<br>type | Scope of supply         | Consulting engineer                        | Starting<br>year |
|----|---------------------------------------------------------------------------------------------------------------------|---------|---------------|-------------------------|--------------------------------------------|------------------|
| 1  | Electricité du Liban                                                                                                | Lebanon | TK            | GLST – 66 kV OHTL       | Lebanon<br>Electricity                     | 1972             |
| 2  | Electricité du Liban                                                                                                | Lebanon | TK            | GLST – 150 kV OHTL      | Surveillance de<br>Geneve<br>(Switzerland) | 1975             |
| 3  | Khuzestan Water<br>and Power Authority<br>(KWPA)                                                                    | Iran    | TK            | GLST – 132 kV OHTL      | Development<br>& Resources<br>(USA)        | 1975             |
| 4  | KWPA                                                                                                                | Iran    | TK            | GLST – 230 kV OHTL      | Development<br>& Resources                 | 1975             |
| 5  | TAVANIR                                                                                                             | Iran    | TK            | GLST – 230 kV OHTL      | Motor<br>Columbus<br>(Switzerland)         | 1977             |
| 6  | Azerbaidjan Regional<br>Electric Co. (AREC)                                                                         | Iran    | TK            | GLST – 63 kV OHTL       | Mahab Ghodss                               | 1978             |
| 7  | Jordan Electricity<br>Authority (JEPCO)                                                                             | Jordan  | TK            | GLST – 132 kV OHTL      | Preece, Cardew                             | 1979             |
| 8  | JEPCO                                                                                                               | Jordan  | TK            | GLST – 132 kV OHTL      | Ewbank (GB)                                | 1981             |
| 9  | Directorate General Of<br>Minor Projects & Rural<br>Electrification<br>Baghdad Electricity<br>Distribution (DGMPRE) | Iraq    | TK            | GLST – 33 kV OHTL       | DGMPRE                                     | 1981             |
| 10 | KWPA                                                                                                                | Iran    | DS            | GLST – 132, 230 kV OHTL | Motor<br>Columbus                          | 1982             |

| #  | Client                                                       | Country        | Proj.<br>type | Scope of supply                                                             | Consulting engineer                                  | Starting<br>year |
|----|--------------------------------------------------------------|----------------|---------------|-----------------------------------------------------------------------------|------------------------------------------------------|------------------|
| 11 | Yarmouk University                                           | Jordan         | TK            | GLST – 33 kV OHTL                                                           | Preece, Cardew<br>& Rider                            | 1982             |
| 12 | DGMPRE                                                       | Iraq           | TK            | GLST – 63 kV OHTL                                                           | DGMPRE                                               | 1983             |
| 13 | West Regional Electric<br>Power (WREP)                       | Iran           | TK            | GLST – 63 kV OHTL                                                           | Mahab Ghodss                                         | 1983             |
| 14 | WREP                                                         | Iran           | TK            | GLST – 132 kV OHTL                                                          | Mahab Ghodss                                         | 1983             |
| 15 | Electricity Board of the<br>States of Malaya                 | Malaysia       | TK            | GLST – 132 kV OHTL                                                          | Crown Agency                                         | 1983             |
| 16 | Jordan Valley Authority                                      | Jordan         | TK            | GLST – 33 kV OHTL                                                           | Stanley<br>Consultants<br>Inc. + Harza<br>Eng. (USA) | 1983             |
| 17 | JEPCO                                                        | Jordan         | TK            | Spun concrete poles – 11, 33 kV OHTL                                        | JEA and JEPCO                                        | 1984             |
| 18 | Egyptian Electricity<br>Authority (EEA)                      | Egypt          | TK            | GLST – 220 kV OHTL                                                          | EEA                                                  | 1984             |
| 19 | Public Corporation for<br>Electric Power                     | South<br>Yemen | DE            | Wooden poles – 11, 33 kV OHTL                                               | Ewbank                                               | 1984             |
| 20 | DGMPRE                                                       | Iraq           | TK            | GLST – 400 kV OHTL                                                          | DGMPRE                                               | 1985             |
| 21 | DGMPRE                                                       | Iraq           | TK            | GLST – 132 kV OHTL                                                          | DGMPRE                                               | 1986             |
| 22 | DGMPRE                                                       | Iraq           | DS            | Materials – 132 kV OHTL                                                     | DGMPRE                                               | 1986             |
| 23 | EEA                                                          | Egypt          | TK            | GLST – 220 kV OHTL                                                          | EEA                                                  | 1986             |
| 24 | EEA                                                          | Egypt          | DS            | Clamps & fittings, insulators – 220 kV OHTL                                 | EEA                                                  | 1986             |
| 25 | Electricity Authority of<br>Cyprus (EAC)                     | Cyprus         | DS            | GLST – 132 kV OHTL                                                          | EAC                                                  | 1987             |
| 26 | JEA                                                          | Jordan         | TK            | GLST -132 kV OHTL                                                           | JEA                                                  | 1987             |
| 27 | DGMPRE                                                       | Iraq           | DST           | Conductors – 400 kV OHTL                                                    | DGMPRE                                               | 1988             |
| 28 | WREP                                                         | Iran           | TK            | GLST – 63, 132 kV OHTL                                                      | Mahab Ghodss                                         | 1989             |
| 29 | EAC                                                          | Cyprus         | DS            | GLST – 132 kV OHTL                                                          | EAC                                                  | 1989             |
| 30 | Azerbaijan Regional<br>Electric Co. (AREC)                   | Iran           | S             | GLST – 400 kV OHTL                                                          | Moshanir                                             | 1990             |
| 31 | EAC                                                          | Cyprus         | S             | GLST – 132 kV OHTL                                                          | EAC                                                  | 1990             |
| 32 | Boyer Tirana                                                 | Albania        | S             | Clamps & fittings, insulators                                               | Boyer                                                | 1990             |
| 33 | EEA                                                          | Egypt          | DS            | GLST and assembling elements<br>– 220 kV OHTL                               | EEA                                                  | 1990             |
| 34 | AREC                                                         | Iran           | S             | GLST, clamps and fittings insulators and earth system - 63,132, 230 kV OHTL | Moshanir                                             | 1991             |
| 35 | AREC                                                         | Iran           | DTS           | GLST, assembly elements, clamps<br>– 132/154 kV OHTL interconnection        | Moshanir                                             | 1991             |
| 36 | EAC                                                          | Cyprus         | S             | Galvanized steel cross arms                                                 | EAC                                                  | 1991             |
| 37 | Electrification of a<br>railway station –<br>Salonic Idomeni | Greece         | S             | Lattice horizontal galvanized girders                                       | Odon<br>Odostromaton                                 | 1991             |

| #  | Client                                              | Country     | Proj.<br>type | Scope of supply                                                                                            | Consulting engineer | Starting<br>year |
|----|-----------------------------------------------------|-------------|---------------|------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| 38 | AREC                                                | Iran        | DTS           | GLST, assembling elements, clamps & fittings, insulators – 230 kV OHTL                                     | Moshanir            | 1991             |
| 39 | AREC                                                | Iran        | DTS           | GLST, assembling elements<br>– 230, 400 kV OHTL                                                            | Mona Co.            | 1992             |
| 40 | Tehran Regional<br>Electric Co. (TREC)              | Iran        | DTS           | GLST, assembling elements – 400 kV OHTL                                                                    | Moshanir            | 1992             |
| 41 | EAC                                                 | Cyprus      | S             | GLST – 132 kV OHTL, tower cross arms                                                                       | EAC                 | 1992             |
| 42 | Telecommunications<br>Co. of Iran                   | Iran        | S             | Assembling elements                                                                                        | •••                 | 1992             |
| 43 | Avangan Co.                                         | Iran        | S             | Galvanized bolts & nuts                                                                                    | •••                 | 1992             |
| 44 | Guilan Regional<br>Electric Co. (GREC)              | Iran        | DTS           | GLST, assembling elements – 230 kV OHTL                                                                    | Moshanir            | 1992             |
| 45 | WREP                                                | Iran        | DTS           | GLST, assembling elements – 63 kV OHTL                                                                     | Moshanir            | 1992             |
| 46 | KWPA                                                | Iran        | DTS           | GLST, clamps & fittings, assembling<br>elements, insulators – 400 kV OHTL                                  | Ghods Niroo         | 1992             |
| 47 | JEA                                                 | Jordan      | DSE           | GLST – 132 kV OHTL                                                                                         | JEA                 | 1992,<br>1994    |
| 48 | WREP                                                | Iran        | DTS           | GLST – 132 kV OHTL                                                                                         | Gharb Niroo         | 1992             |
| 49 | West Regional Electric<br>Co. (WREC)                | Iran        | DTS           | Clamps & fittings – 63, 132 kV OHTL                                                                        | Gharb Niroo         | 1993             |
| 50 | Bakhtaran Regional<br>Electric Co. (BREC)           | Iran        | DTS           | GLST, clamps, assembling elements<br>– 230 kV OHTL                                                         | Moshanir            | 1993             |
| 51 | BREC                                                | Iran        | DTS           | GLST, assembly elements – 400 kV OHTL                                                                      | Moshanir            | 1993             |
| 52 | BREC                                                | Iran        | DTS           | Clamps – 230 kV OHTL                                                                                       | Moshanir            | 1993             |
| 53 | JEA                                                 | Jordan      | TK            | GLST – 132 kV OHTL                                                                                         | JEA                 | 1993             |
| 54 | Ministry of Energy<br>and Water                     | Kuwait      | S             | Steelworks, assembling elements                                                                            | MEW                 | 1993             |
| 55 | National Iranian<br>Copper Industry Co.<br>– Sirjan | Iran        | DTS           | GLST, clamps, OHGW – 230 kV OHTL                                                                           | Moshanir            | 1993             |
| 56 | KWPA                                                | Iran        | S             | AAAC conductor                                                                                             | Moshanir            | 1993             |
| 57 | AREC                                                | Iran        | DTS           | Clamps & fittings – 154, 132, 230 kV OHTL                                                                  | Moshanir            | 1993             |
| 58 | TREC                                                | Iran        | DTS           | GLST – 400 kV OHTL                                                                                         | Moshanir            | 1993             |
| 59 | TREC                                                | Iran        | DTS           | GLST, assembling elements – 230 kV OHTL                                                                    | Moshanir            | 1993             |
| 60 | Tavanir                                             | Iran        | DT            | GLST – 63 kV OHTL                                                                                          | MATN                | 1995             |
| 61 | Moshanir P.E. Co.                                   | Iran        | DT            | GLST – 230 kV OHTL                                                                                         | Moshanir            | 1995             |
| 62 | K.E.SH. – Tirana                                    | Albania     | S             | Clamps & fittings – 132 kV OHTL                                                                            | K.E.SH.             | 1995             |
| 63 | Power Generation<br>and Transmission Co.<br>– Ramin | Iran        | DTS           | GLST, assembling elements – 230 kV OHTL                                                                    | Ghods Niroo         | 1995             |
| 64 | National Power<br>Corporation<br>(NAPOCOR)          | Philippines | TK            | GLST, clamps, fittings, composite insulator<br>strings, power conductors, OHGW, OPGW<br>– 132, 230 kV OHTL | Sweed Power         | 1995             |

| 67 Public Establishment for Distribution and Exploitation of Electric Energy  68 National Electric Power Authority  69 NAPOCOR  70 EEA  71 TREC  72 National Mobile Telecommunication Co. (NMTC)  73 Mobifon  74 MEM  75 EGAT  76 Consorcio GyM Cosapi  77 Consorcio | Peru<br>Iran | S   | GLST – 60 kV OHTL                                                            | MEM                       | 1005          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|------------------------------------------------------------------------------|---------------------------|---------------|
| 67 Public Establishment for Distribution and Exploitation of Electric Energy  68 National Electric Power Authority  69 NAPOCOR  70 EEA  71 TREC  72 National Mobile Telecommunication Co. (NMTC)  73 Mobifon  74 MEM  75 EGAT  76 Consorcio GyM Cosapi  77 Consorcio | Iran         |     |                                                                              | IVILIVI                   | 1995,<br>1996 |
| for Distribution and Exploitation of Electric Energy  68 National Electric Power Authority  69 NAPOCOR  70 EEA  71 TREC  72 National Mobile Telecommunication Co. (NMTC)  73 Mobifon  74 MEM  75 EGAT  76 Consorcio GyM Cosapi  77 Consorcio                         | IIuII        | DT  | GLST – 230 kV OHTL                                                           | Moshanir                  | 1996          |
| Power Authority  69 NAPOCOR  70 EEA  71 TREC  72 National Mobile Telecommunication Co. (NMTC)  73 Mobifon  74 MEM  75 EGAT  76 Consorcio GyM Cosapi  77 Consorcio                                                                                                    | Syria        | S   | Gantry towers for transformer station,<br>clamps & fittings – 66/20 kV OHTL  | PEDEEE                    | 1996          |
| 70 EEA  71 TREC  72 National Mobile Telecommunication Co. (NMTC)  73 Mobifon  74 MEM  75 EGAT  76 Consorcio GyM Cosapi  77 Consorcio                                                                                                                                 | Nigeria      | S   | GLST, lighting poles, gantry towers for 132/33 kV OHTL substation            | NEPA                      | 1996          |
| 71 TREC  72 National Mobile Telecommunication Co. (NMTC)  73 Mobifon  74 MEM  75 EGAT  76 Consorcio GyM Cosapi  77 Consorcio                                                                                                                                         | Philippines  | TK  | GLST – 138, 230 kV OHTL                                                      | Sweed Power<br>& EEDD-NPC | 1997          |
| 71 TREC  72 National Mobile Telecommunication Co. (NMTC)  73 Mobifon  74 MEM  75 EGAT  76 Consorcio GyM Cosapi  77 Consorcio                                                                                                                                         | Egypt        | S   | Fittings                                                                     | EEA                       | 1997          |
| Telecommunication Co. (NMTC)  73 Mobifon  74 MEM  75 EGAT  76 Consorcio GyM Cosapi  77 Consorcio                                                                                                                                                                     | Iran         | DTS | GLST, assembling elements – 230 kV OHTL                                      | Moshanir                  | 1997          |
| 74 MEM 1 75 EGAT 76 Consorcio GyM Cosapi 1 77 Consorcio                                                                                                                                                                                                              | Kuwait       | S   | Steel lattice towers for antennae – 70 m high                                | MTCo                      | 1997          |
| 75 EGAT                                                                                                                                                                                                                                                              | Romania      | S   | Hot dip galvanized lattice steel towers for telecommunications - 40 m high   | MOBIFON                   | 1997          |
| 76 Consorcio GyM Cosapi 1                                                                                                                                                                                                                                            | Peru         | DTS | GLST, assembling elements<br>– 60, 138 kV OHTL                               | MEM                       | 1997          |
| 77 Consorcio                                                                                                                                                                                                                                                         | Thailand     | DTS | GLST, assembling elements<br>– 115, 230 kV OHTL                              | EGAT                      | 1997          |
|                                                                                                                                                                                                                                                                      | Peru         | S   | GLST – 220 kV OHTL                                                           | MEM                       | 1998          |
| Cosapi–Abengoa                                                                                                                                                                                                                                                       | Peru         | S   | GLST – 220 kV OHTL                                                           | MEM                       | 1998          |
| 78 Consorcio 1<br>Cosapi–Balarezo                                                                                                                                                                                                                                    | Peru         | S   | GLST – 138 kV OHTL                                                           | MEM                       | 1998          |
| 79 JEPCO J                                                                                                                                                                                                                                                           | Jordan       | SE  | GLST – 132 kV OHTL                                                           | NEPCO                     | 1998          |
| 80 ONUR CIVATA                                                                                                                                                                                                                                                       | Turkey       | S   | Fittings                                                                     | •••                       | 1998          |
| 81 MEM                                                                                                                                                                                                                                                               | Peru         | DTS | GLST – 138 kV OHTL                                                           | MEM                       | 1998          |
| 82 JEPCO J                                                                                                                                                                                                                                                           | Jordan       | TK  | GLST, assembling elements – 132 kV OHTL                                      | NEPA                      | 1998          |
| 83 MEM                                                                                                                                                                                                                                                               | Peru         | DTS | GLST – 220 kV OHTL                                                           | MEM                       | 1999          |
| 84 NMTC                                                                                                                                                                                                                                                              | Kuwait       | S   | Hot dip galvanized tubular steel towers for antennae – 25, 30, 40, 75 m high | MTCo                      | 1999          |
| 85 NMTC                                                                                                                                                                                                                                                              | Kuwait       | S   | Hot dip galvanized tubular steel towers for antennae – 40, 75, 100 m high    | MTCo                      | 2000          |
| 86 Hayat                                                                                                                                                                                                                                                             | Kuwait       | S   | Lattice steel antenna towers – 64 m high                                     | NMTC                      | 2000          |
| 87 NMTC                                                                                                                                                                                                                                                              | Kuwait       | TK  | Lattice steel antenna towers – 70 m high                                     | NMTC                      | 2000          |
| 88 Intracom SA Greece,<br>Intrarom SA Romania                                                                                                                                                                                                                        | Romania      | S   | Hot dip galvanised tubular steel antenna<br>towers – 30, 50 m high           | Intrarom SA               | 2000          |
| 89 NAPOCOR                                                                                                                                                                                                                                                           | Philippines  | TK  | GLST, assembling elements – 500 kV OHTL                                      | Edwin<br>Ladingnon        | 2000          |
| 90 JEPCO J                                                                                                                                                                                                                                                           | Jordan       | TK  | GLST – 132 kV OHTL T/L                                                       | NEPA                      | 2000          |

# **Independent Auditors' Report**

To the shareholders of Romelectro S.A.

# Report on the Unconsolidated Financial Statements

We have audited the accompanying unconsolidated financial statements of Romelectro S.A ("the Company"), which comprise the balance sheet as at 31 December 2011, and the income statement, statement of changes in equity and cash flow statement for the year then ended, and a summary of significant accounting policies and other explanatory notes presenting the following:

- ► Net assets/Total equity and reserves: Lei 74,444,836
- ► Profit for the year: Lei 11,122,774

# Management's Responsibility for the Unconsolidated Financial Statements

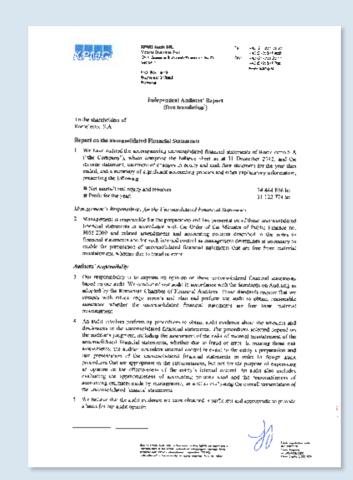
Management is responsible for the preparation and fair presentation of these unconsolidated financial statements in accordance with the Order of the Minister of Public Finance no. 3055/2009 and related amendments and accounting policies described in the notes to financial statements and for such internal control as management determines is necessary to enable the preparation of unconsolidated financial statements that are free from material misstatement, whether due to fraud or error.

## **Auditors' Responsibility**

Our responsibility is to express an opinion on these financial statements based on our audit. We conducted our audit in accordance with the Standards on Auditing as adopted by the Romanian Chamber of Financial Auditors. Those standards require that we comply with ethical requirements and plan and perform the audit to obtain reasonable assurance whether the financial statements are free from material misstatement.

An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the financial statements. The procedures selected depend on the auditor's judgment, including the assessment of the risks of material misstatement of the financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity's preparation and fair presentation of the financial statements in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the entity's internal control. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of accounting estimates made by management, as well as evaluating the overall presentation of the financial statements.

We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.


## **Opinion**

In our opinion, the unconsolidated financial statements as at and for the year ended 31 December 2012 have been prepared, in all material respects, in accordance with the Order of the Minister of Public Finance no. 3055/2009 and related amendments and related amendments and accounting policies described in the notes to unconsolidated financial statements.

### Other Matters

This independent auditors' report is made solely to the Company's share-holders, as a body. Our audit work has been undertaken so that we might state to the Company's shareholders those matters we are required to state to them in an auditor's report and for no other purpose. To the fullest extent permitted by law, we do not accept or assume responsibility to anyone other than the Company and the Company's shareholders as a body, for our audit work, for the report on financial statements and the report on conformity, or for the opinion we have formed.

The accompanying financial statements are not intended to present the unconsolidated financial position, results of operations, cash flows and a complete set of notes to the unconsolidated financial statements of the Company in accordance with accounting principles and practices generally accepted in countries and jurisdictions other than Romania. Accordingly, the accompanying unconsolidated financial statements are not designed for those who are not informed



Opinities

6. Its rear agencies that a Devertion 101 hands the Manitary of Sechi poliuses towards for its poliuses towards for its poliuses towards for its rearrier was an apparent of the rearrier was an apparent rear than it words, for the reports of the dependent of the contract of the reports of the contract of the reports of the results of the r

6 In our upmaned, the encounterfairful frongraph magentains as a mad to the year cruded of Describer 2017 have been perpaired, in all magentainespeeds, a accordance with the Describer 2017 have been greyword, in all magentainespeeds, as accordance with the Describer Describer of the Musiater of Problem Instances in 1997 2000 and related authorities and accounting poliuses of translation in the notes on unconsort offset. Seemed adjustment of the problems and accounting Theorem and the policy of the Chapter 2017 and the Chapter 2017 and the Chapter 2017 and the Chapter 2017 and the Problems are also also as a society in growing the policy of accounting the policy of the pulses called promotion by late, and do not account of the policy of the Chapter 2017 and problems are accounted by the policy and the Chapter 2018 and problems are been 2018 and work, for the report on unconducted that are also the report of the Chapter 2018 and the report of the Chapter 2018.

The sourcepassing consensualistic financial distringuist are not insteaded to present the uniformibilitied financial processing roughts or oppraison, as if these are a complete set of motion to the unconsolidation of instead of insteads of the Company in accommon time with accounting principles and presented epitedly adopted in consistent and prantitions of them to principles and presented epitedly adopted in consistent and prantitions of them to principles and consistent and the control of the consistent and principles are designed for the mode are not informed attent termination (goal and prantity requirementcipling the Collect of the Minister of Unit ( ) spect or 1055 2009 and related to their of the Minister of Unit ( ) spect or 1055 2009 and related to the control of the Minister of Unit ( ) spect or 1055 2009 and related to the control of the Minister of Unit ( ) spect or 1055 2009 and related to the control of the Minister of Unit ( ) spect or 1055 2009 and related to the control of the Collection of th

amendments

It is construct until the requirements of the Order of the Municip of Public I parties to
26th 2009 and traited attendments, the Lempany has the topal obligation of proper and as
three analysis the consolidated francoul naturatures as as 31 Concepting 2012.

Report on conformety of the Administrators' Report with the manuscullabilist firencial statements

In accordance with the Order of the Minneto of Police Finance no 1895/0618 and related accordances, small pol. 378 police? of seconding regulations on accordance with the N° th Dearston of CUL we have read the Administrator? Report attached to the unconstructed accordance resource report to the Administrator of Cult and accordance of the unconstructed accordances report to the Administrator of the Administrator of the construction of the Administratory. Report we have not administrator of fractional information with its order accordance in the administratory of the information preserved to the accordance of translated translations are described in the administratory of the administration of the

For and on behalf of KPMG Audit SRL:

KPMG

KPMG AUDIT SRL

regulating for the Chapter of Figures 1.
Auditors of Resistant under no (1997/200) Auditors of Resistant under no (1997/200)

Partiered 15 April 2019

-

about Romanian legal and statutory requirements including the Order of the Minister of Public Finance no. 3055/2009 and related amendments. In accordance with the Order of the Minister of Public Finance no. 3055/2009 and related amendments, the Company has the legal obligation to prepare and to have audited the consolidated financial statements as at 31 December 2012.

# Report on conformity of the Administrators' Report with the Unconsolidated Financial Statements

In accordance with the Order of the Minister of Public Finance no. 3055/2009, article no. 318 point 2 of accounting regulations in accordance with the IV-th Directive of CEE we have read the Administrators' Report attached to the unconsolidated administrators' report. The Administrators' Report is not a part of the unconsolidated financial statements. In the Administrators' Report we have not identified any financial information which is not in accordance, in all

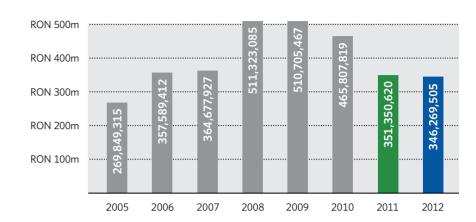
material respects, with the information presented in the accompanying unconsolidated financial statements.

For and on behalf of KPMG Audit SRL:

**John Lane,** registered with the Chamber of Financial Auditors of Romania under no. 1507/2003

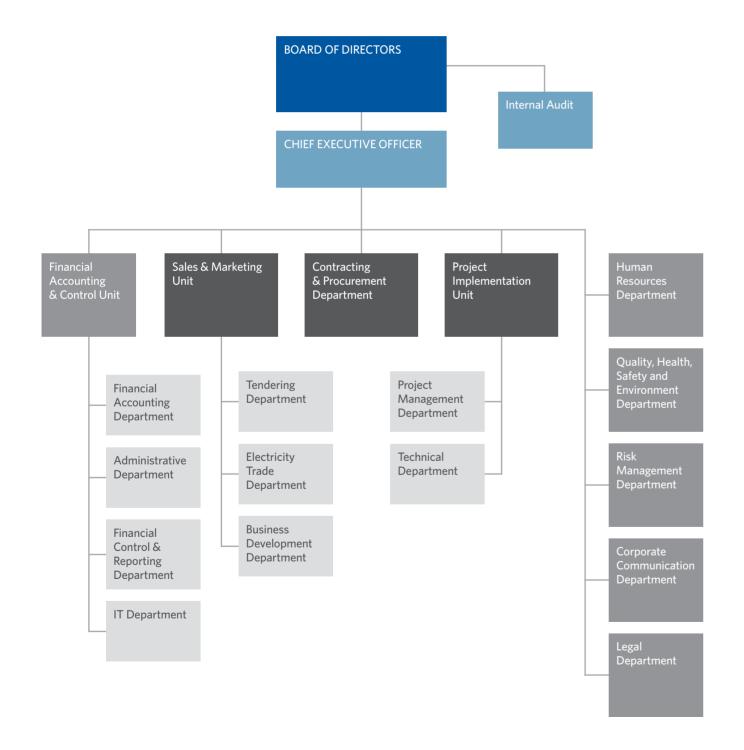
# KPMG AUDIT SRL

registered with the Chamber of Financial Auditors of Romania under no. 9/2001


Bucharest, 15 April 2013

# **Financial Highlights**

|                                         | 2011        | 2012        |
|-----------------------------------------|-------------|-------------|
|                                         |             |             |
| RON to EUR exchange rate on 31 December | 4.3197      | 4.4287      |
| RON to EUR average exchange rate        | 4.2379      | 4.4560      |
| Key figures                             |             |             |
| Employees, average number               | 96          | 88          |
| Turnover (RON)                          | 351,350,620 | 346,269,505 |
| Nominal capital (RON)                   | 15,650,640  | 15,630,640  |
| Gross profit (RON)                      | 54,488,533  | 13,514,998  |
| Net profit (RON)                        | 46,541,408  | 11,122,774  |
| Consolidated profit and loss account    | RON         | RON         |
| Operating income                        | 351,514,138 | 346,792,212 |
| Financial income                        | 6,241,468   | 13,241,486  |
| Operating expenses                      | 299,086,057 | 336,167,134 |
| Financial expenses                      | 4,181,016   | 10,351,566  |
| Total expenses                          | 303,267,073 | 346,518,700 |
| Consolidated balance sheet              | RON         | RON         |
| Noncurrent assets                       | 41,997,313  | 31,356,106  |
| → Intangible assets                     | 193,898     | 112,567     |
| → Tangible assets                       | 21,406,787  | 20,902,868  |
| → Financial assets                      | 20,396,628  | 10,340,671  |
| Current assets                          | 188,752,072 | 138,980,815 |
| Regularisation & similar account        | 1,205,068   | 16,243,788  |
| Assets total                            | 231,954,453 | 186,580,709 |
| Own capital                             | 109,420,815 | 74,444,836  |
| Debts                                   | 102,128,725 | 101,464,832 |
| Liabilities total                       | 231,954,453 | 186,580,709 |


# Turnover Evolution Graph

(RON per year)



|                                      | 2011       | 2012       |
|--------------------------------------|------------|------------|
| Key figures                          |            |            |
| Employees, average number            | 96         | 88         |
| Turnover (EUR)                       | 82,906,775 | 77,708,597 |
| Nominal capital (EUR)                | 3,623,085  | 3,529,397  |
| Gross profit (EUR)                   | 12,857,437 | 3,032,989  |
| Net profit (EUR)                     | 10,982,186 | 2,496,134  |
| Consolidated profit and loss account | EUR        | EUR        |
| Operating income                     | 82,945,359 | 77,825,900 |
| Financial income                     | 1,472,774  | 2,971,608  |
| Operating expenses                   | 70,574,119 | 75,441,457 |
| Financial expenses                   | 986,577    | 2,323,062  |
| Total expenses                       | 71,560,696 | 77,764,520 |
| Consolidated balance sheet           | EUR        | EUR        |
| Noncurrent assets                    | 9,722,275  | 7,080,205  |
| → Intangible assets                  | 44,887     | 25,418     |
| → Tangible assets                    | 4,955,619  | 4,719,865  |
| → Financial assets                   | 4,721,770  | 2,334,922  |
| Current assets                       | 43,695,644 | 31,381,854 |
| Regularisation & similar account     | 278,970    | 3,667,846  |
| Assets total                         | 53,696,889 | 42,129,905 |
| Own capital                          | 25,330,651 | 16,809,636 |
| Debts                                | 23,642,550 | 22,910,749 |
| Liabilities total                    | 53,696,889 | 42,129,905 |

# **Organizational Chart**







1-3 Lacul Tei Blvd., Bucharest 020371, Romania

Phone: +40 21 2004 300 Fax: +40 21 2004 375 E-mail: office@romelectro.ro

www.romelectro.ro